DNA detection by an extended-gate FET sensor with a high-frequency voltage superimposed onto a reference electrode.
نویسندگان
چکیده
An extended-gate field-effect-transistor (FET) sensor with a gold-sensing electrode, to which a gold-thiol bond could easily be applied, was developed for DNA detection. Because the gold electrode is located in a different area from the FET, it can be operated without a light-shielding box by masking only the FET. However, when the FET sensor is used in an aqueous solution, fluctuation of the interface potential on the gold surface occurs, which results in decreased sensitivity. In DNA detection, 1 h or more was required to stabilize the drain current of the FET sensor after dipping it into the solution. To improve the sensitivity by reducing the fluctuation, we devised a measurement technique using a high-frequency voltage superimposed onto a reference electrode. With a superimposed high frequency voltage of over 1 kHz, the time required to stabilize the drain current of the FET sensor after dipping it in the solution was not only shortened to 5 min, but the fluctuation of the drain current was also reduced. As a result of applying this method, the FET sensor could successfully detect DNA hybridization and the extension reaction.
منابع مشابه
Enzyme immunoassay using a reusable extended-gate field-effect-transistor sensor with a ferrocenylalkanethiol-modified gold electrode.
A reusable extended-gate field-effect transistor (FET) sensor with an 11-ferrocenyl-1-undecanethiol (11-FUT) modified gold electrode was developed for applying to enzyme immunoassay. It was found that the 11-FUT modified FET sensor detected a thiol compound 50 times or more repeatedly after a treatment with a 5% hydrogen peroxide solution. The gate-voltage shift of the FET sensor showed a fairl...
متن کاملExtended-Gate Field-Effect Transistor based Sensor for Detection of Hyoscine N-Butyl Bromide in its Pharmaceutical Formulation
A novel recognition method for selective determination of the hyoscine N-Butyl bromide (HBB), an antispasmodic agent for smooth muscles, was devised using extended gate field-effect transistor (EG-FET) as transducing unit. For this purpose a PVC membrane, containing hyoscine n-butyl-tetraphenyl borate ion-pair as recognition component, was coated on Ag/AgCl wire, which was connected to the exte...
متن کاملRepresentation of a nanoscale heterostructure dual material gate JL-FET with NDR characteristics
In this paper, we propose a new heterostructure dual material gate junctionless field-effect transistor (H-DMG-JLFET), with negative differential resistance (NDR) characteristic. The drain and channel material are silicon and source material is germanium. The gate electrode near the source is larger. A dual gate material technique is used to achieve upward band bending in order to access n-i-p-...
متن کاملRepresentation of the temperature nano-sensors via cylindrical gate-all-around Si-NW-FET
In this paper, the temperature dependence of some characteristics of cylindrical gate-all-around Si nanowire field effect transistor (GAA-Si-NWFET) is investigated to representing the temperature nano-sensor structures and improving their performance. Firstly, we calculate the temperature sensitivity of drain-source current versus the gate-source voltage of GAA-Si-NWFET to propose the temperatu...
متن کاملSelf-Assembled Films of Dendrimers and Metallophthalocyanines as FET-Based Glucose Biosensors
Separative extended gate field effect transistor (SEGFET) type devices have been used as an ion sensor or biosensor as an alternative to traditional ion sensitive field effect transistors (ISFETs) due to their robustness, ease of fabrication, low cost and possibility of FET isolation from the chemical environment. The layer-by-layer technique allows the combination of different materials with s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2007